

Defect formation in cast iron

Lennart Elmquist

School of Engineering Jönköping University Sweden

Tammerfors, Finland, November 8, 2012

Introduction

Casting

- Mould cavity
- Melting process
- Pouring
- Solidification
- Mould removal
- Cleaning and finishing

Advantages

- Complex shapes
- Holes and inner cavities
- Wide range of alloys
- Melt treatment
- Economical

Introduction

DEFECTS!

Common defects:

- **Blowholes**
- **Pinholes**
- Shrinkage
- Penetration
- **Inclusions**
- etc...

Slag inclusion defect Shrinkage porosity

Carbon monoxide blowhole

Metal expansion penetration

- Gas defects
 - Gas absorption
 - Gas evolution
- Inclusions
- Shrinkage porosity
 - Defect characterization
 - Migrating hot spot
 - Primary austenite
- Metal expansion penetration
 - Primary austenite
- Other quality problems
- What about the future?
- Summary

- Gas defects
 - Gas absorption
 - Gas evolution
- Inclusions
- Shrinkage porosity
 - Defect characterization
 - Migrating hot spot
 - Primary austenite
- Metal expansion penetration
 - Primary austenite
- Other quality problems
- What about the future?
- Summary

"The lack of understanding of the properties of these materials is, according to many experts, the reason that 40% of the energy used for their processing is wasted!"

Neue Zürcher Zeitung, 13.02.2008

- Gas defects
 - Gas absorption
 - Gas evolution
- Inclusions
- Shrinkage porosity
 - Defect characterization
 - Migrating hot spot
 - Primary austenite
- Metal expansion penetration
 - Primary austenite
- Other quality problems
- What about the future?
- Summary

Gas defects – Introduction

Source: Diószegi, 2005

Source: UAB Casting Engineering Laboratory (CEL), 2005

Gas defects – Introduction

- Degradation of binder material
- Gas precipitate during solidification due to decreased solubility
- Gas may be picked up by the melt during mould filling
- Slag constituents can react with alloying additions in the metal and form gaseous reaction products

Gas defects – Introduction

- Hydrogen pinholes
- Nitrogen pinholes
- Blowholes
- Fissures
- Carbon monoxide
- Slag blows

Source: www.ikominerals.de

Pinholes

- Hydrogen, nitrogen, CO
- Revealed after machining
- Usually small
- Round shape
- Graphite lining

Source: www.ikominerals.de

Remedies

- Low levels of Al and Ti
- Control of steel scrap
- Cores and water-based coatings fully cured and dried

Pinholes

Hydrogen pinholes

- Water and organic materials
- Air humidity
- Rusty charge material
- Damp refractory material
- Moisture in mold and core
- Core binder

Nitrogen pinholes

- Resin-bonded cores and molds
- Sand additives
- Coatings and glues
- Charge materials

Source: http://www.objet.sk/content/products/sand_casting_a4.pdf

Pinholes

Carbon monoxide pinholes

- Reaction of carbon and oxygen
 - Liquid slag rich in iron oxide
 - CO₂ react with iron
 - Carbon react with water
- No graphite lining
- MnS and slag inclusions

Source: www.ikominerals.de

Blowholes

- Large cavities
- Normally irregular in shape
- Smooth walls
- Graphite lining
- High turbulence during mold filling
- High gas pressure in the mold

Source: www.ikominerals.de

Blowholes

- Casting design
- Gating
- Sand permeability
- Core print area
- Type of resin system
- Extent of cure and drying
- Pouring temperature
- Rusty chaplets
- Clogged vents
-etc

Source: www.ikominerals.de

Fissures

- Narrow crack-like cavities
- Frequently have dendritic structures
- Excessive nitrogen main cause
- Hydrogen may intensify the defect

Source: www.ikominerals.de

Sources

- Nitrogen content high
- High nitrogen content in core binder
- Poor core venting

Solubility of gases

- 1. Diffusion of gas to the surface
- 2. Chemical reaction on the surface
- Diffusion of one or more reaction products away from the surface

$$H_2(g) \leftrightarrow 2\underline{H}$$

$$[\underline{H}] = K_H \sqrt{P(H_2)}$$

Source: Svensson et al, 1980

Solubility of gases

Influence of alloying elements on solubility

Hydrogen

Source: Weinstein et al, 1963

Nitrogen

Source: Dawson et al, 1965

Solubility of gases

$$[\underline{N}] = K_N \sqrt{P(N_2)}$$

 The solubility of hydrogen and nitrogen affect each other

$$P_{TOT} = P_{H_2} + P_{N_2}$$

 Cumulative effect that increase the risk for porosity

Source: Svensson et al, 1980

- Melting methods
- Different foundries
- Different furnaces
- Long period of time

Hydrogen

- Preheating
- Holding-time

Lennart Elmquist Tammerfors 2012-11-08

Nitrogen

- Melting method
- Charge material

Source: Orlenius, Elmquist, Diószegi, 2007

Oxygen

- Dissolved oxygen
- Oxygen found in oxides

Total amount of oxygen

 Difference between processes

Source: Elmquist, Orlenius, Diószegi, 2007

After mold filling

Lennart Elmquist Source: Orlenius, Eli

Source: Orlenius, Elmquist, Diószegi, 2007

- Gas defects
 - Gas absorption
 - Gas evolution
- Inclusions
- Shrinkage porosity
 - Defect characterization
 - Migrating hot spot
 - Primary austenite
- Metal expansion penetration
 - Primary austenite
- Other quality problems
- What about the future?
- Summary

Source: Orlenius et al, 2008

- Investigate relationship gas absorption mold filling
- Compare simulation reality
 - Turbulence during filling
 - Permeability
 - Binders

Sample	Binder		Coating	Steel plate	Gating system
Name	Type	Content [%]	Туре		
Epoxy - Reference	Epoxy-SO₂	1.2		Closed Perforated	High turbulence Low turbulence
Epoxy – Permeable	Epoxy-SO₂	1.2			
Epoxy – Coated	Epoxy-SO ₂	1.2	Aluminium silicate	Closed	
Epoxy – Turbulent	Epoxy-SO ₂	1.2		Closed	
Epoxy – Filter	Epoxy-SO₂	1.2		Closed Closed	
PUCB	PUCB	1.6			
Green sand	Green sand			Perforated	

^{*} This mould is used as a reference mould.

Source: Orlenius et al, 2008

Source: Orlenius et al, 2008

Filling velocity

Source: Orlenius et al, 2008

Turbulent mould filling

Source: UAB Casting Engineering Laboratory (CEL), 2005

- Gas defects
 - Gas absorption
 - Gas evolution
- Inclusions
- Shrinkage porosity
 - Defect characterization
 - Migrating hot spot
 - Primary austenite
- Metal expansion penetration
 - Primary austenite
- Other quality problems
- What about the future?
- Summary

Mould and core gas evolution

Volume and rate of gas evolution

Source: Orlenius et al, 2008

Gas evolution

Core geometry

- Volume equal
- Amount of binder equal

Highest rate for parallelepiped

Source: Orlenius et al, 2008

Gas evolution

Binder type

- Inorganic binder
- Organic binder
- Amount of binder
- Storage time
- Temperature

Gas evolution

Coatings

- Improve surface
- Aluminium silicate
- Zircon
- Drying process

- Gas defects
 - Gas absorption
 - Gas evolution
- Inclusions
- Shrinkage porosity
 - Defect characterization
 - Migrating hot spot
 - Primary austenite
- Metal expansion penetration
 - Primary austenite
- Other quality problems
- What about the future?
- Summary

Inclusions – sand

- Occur at widely varying positions
- Sand torn away by metal stream
- In association with CO blowholes and slag
- Carefully blow out mold cavities
- Avoid high pouring rates
- Ensure uniform mold compaction

- Edge disintegration
- Sand crust formation
- Erosion

Source: www.ikominerals.de

Inclusions – slag

- Irregular-shape
- Non-metallic inclusions
- Upper casting surfaces
- Formation of CO

Source: www.ikominerals.de

Possible causes

- Oxide content of the charge too high
- Poor dissolution of inoculants
- Poor slag practice

Inclusions – slag

- Filter
- Design of the gating system – slag traps

Outline

- Gas defects
 - Gas absorption
 - Gas evolution
- Inclusions
- Shrinkage porosity
 - Defect characterization
 - Migrating hot spot
 - Primary austenite
- Metal expansion penetration
 - Primary austenite
- Other quality problems
- What about the future?
- Summary

Introduction

Source: Elmquist et al, 2008

Shrinkage – Introduction

Shrinkage defects

- Open shrinkage defects (macroshrinkage)
- Closed shrinkage defects (shrinkage porosity)

Source: Stefanescu, 2005

Lennart Elmquist Tammerfors 2012-11-08

Generally

- Liquid contraction
- Liquid-to-solid contraction
- Solid contraction

Cast iron – graphite expansion

Shrinkage – Introduction

Factors promoting shrinkage porosity

- Nature and properties of the sand mould
- Metal composition
- Pouring temperature
- Degree of eutectic nucleation of the metal
- Solidification mode

Compensates for the shrinkage

- Feeding of metal
- Graphite expansion

- Atmospheric gas
- Dissolved gas (hydrogen, nitrogen)

Shrinkage – Introduction

- Different types of shrinkage
- Related to cooling curve

Source: Soivio, Elmquist, 2012

Tammerfors 2012-11-08

Shrinkage – Introduction

Outline

- Gas defects
 - Gas absorption
 - Gas evolution
- Inclusions
- Shrinkage porosity
 - Defect characterization
 - Migrating hot spot
 - Primary austenite
- Metal expansion penetration
 - Primary austenite
- Other quality problems
- What about the future?
- Summary

Defect characterization

Case: Cylinder Heads

- **Economy**
- > Environment

- Shrinkage porosity
- Characteristic features
- Knowledge about mechanisms

- Two foundries
- Two designs
- Production line
- With and without porosity

Defect characterization

Similarities

- Position on casting
- Surface defect
- Connection surface porosity

- Penetrating through the casting
- Enclosing certain units
- Primary crystals?

Source: Elmquist, Adolfsson, Diószegi, 2008

Defect characterization

- S3700 16.0kV 23.4mm x270 SE 200um
- Source: Elmquist, Adolfsson, Diószegi, 2008

- Border between surface and porosity
- Oxide layer connection to atmosphere
- No graphite layer

Shrinkage Porosity vs. Penetration

Outline

- Gas defects
 - Gas absorption
 - Gas evolution
- Inclusions
- Shrinkage porosity
 - Defect characterization
 - Migrating hot spot
 - Primary austenite
- Metal expansion penetration
 - Primary austenite
- Other quality problems
- What about the future?
- Summary

Migrating hot spot

- Heat is removed during solidification
- Different cooling conditions in different parts
- Initial temperatures in casting/mold
- Part of the casting that solidifies last
- Migrates during solidification
- Depends on geometry
- Heat removal
- Global/Local hot spots

Migrating hot spot

CH1 CH2

Source: Elmquist, Adolfsson, Diószegi, 2008

- Thermal centre at mold/metal interface
- Migrating hot spot

Migrating hot spot

Hot spot migrates

- Casting/mold interface
- Shrinkage porosity
- Metal expansion penetration

- \$3700 16.0kV 64.8mm x14 SE 4.00mm
- Geometry developed by simulations
- Final position of hot spot

Source: Elmquist, Adolfsson, Diószegi, 2008

Outline

- Gas defects
 - Gas absorption
 - Gas evolution
- Inclusions
- Shrinkage porosity
 - Defect characterization
 - Migrating hot spot
 - Primary austenite
- Metal expansion penetration
 - Primary austenite
- Other quality problems
- What about the future?
- Summary

Shrinkage Porosity

Develop a casting that generates shrinkage porosity

Shrinkage Porosity

Geometry generating porosity

Migrating hot spot

Source: Elmquist, Diószegi, 2008

Solidification

Solidification of grey cast iron

- Nucleation
- Growth

- Primary austenite
- Eutectic cells

Source: Elmquist et al, 2008

Solidification

Macrostructure

- Columnar dendrites
- Equiaxed dendrites
- CET

zone

Columnar

Microstructure

- Dendrite Arm Spacing (SDAS)
- Fraction Austenite
- Eutectic cell size

Equiaxed zone

Source: Elmquist et al, 2008

Similarities

- Shrinkage porosity
- Surface defects
- Penetrating network
- Contact with atmosphere

Source: Elmquist, Diószegi, 2008

Source: Elmquist, Diószegi, 2008

DAAS (Direct Austempering After Solidification

Macrostructure

- Equiaxed dendrites
- Columnar dendrites
- CET
- > Columnar zone
- > Abnormal columnar zone
- ➤ Similar CET

Porosity between primary crystals

Source: Elmquist, Diószegi, 2008

Formation of shrinkage

porosity

- Hot spot
- Migration
- Last area of solidification
- Weak columnar zone
- Atmospheric gas
- Shrinkage porosity
- Surface defect

Source: Elmquist, Diószegi, 2008

SOLTIME

Outline

- Gas defects
 - Gas absorption
 - Gas evolution
- Inclusions
- Shrinkage porosity
 - Defect characterization
 - Migrating hot spot
 - Primary austenite
- Metal expansion penetration
 - Primary austenite
- Other quality problems
- What about the future?
- Summary

- Metal penetration is a casting condition resulting from reactions at the mould-metal interface
 - Physical
 - Mechanical
 - Thermo-chemical

"Metal penetration is defined as the condition in which cast metal has entered into the pore spaces of the mold and core beyond the mid-point of the surface layer of sand grains."

(Draper and Gaindhar, 1977)

Four basic mechanisms:

- Mechanical (liquid-state)
- Chemical
- Vapor-state
- Explosion penetration

The liquid metal exerts:

- Static pressure
- Dynamic pressure
- Pressure because of expansion

Source: Draper and Gaindhar, 1977

 $Pg + P_f + P_{gas}$

Source: Stefanescu, 2008

- Generally occurs at locations where the sand is the hottest (cores, concave sections) and is of lowest density
- Low surface tension
- High P, Si, or Mn content
- Elevated static or dynamic metal pressure
- High metal and sand temperature
- Sand too coarse, or insufficiently rammed
- Thermal conductivity of sand too low
- Poor quality mold wash or blacking

(AFS International atlas of casting defects)

- Only removed by extensive chipping and grinding
- Often so severe that castings are beyond the point of economical rework and must be scrapped
- Tool wear

Source: Diószegi and Dugic, 2007

CASE Study – Cylinder heads

- Shrinkage no Penetration
- No shrinkage Penetration

Source: Elmquist et al, 2008

⇒ Shrinkage Porosity vs. Penetration

Migrating hot spot is related also to penetration problems

Outline

- Gas defects
 - Gas absorption
 - Gas evolution
- Inclusions
- Shrinkage porosity
 - Defect characterization
 - Migrating hot spot
 - Primary austenite
- Metal expansion penetration
 - Primary austenite
- Other quality problems
- What about the future?
- Summary

Geometry generating metal penetration

Test Casting

Source: Diószegi and Dugic, 2007

Columnar zone Equiaxed zone

Source: Diószegi and Dugic, 2007

The volumetric changes cause either a surplus or a deficit of melt

Hot spot at casting/mold interface – the weakest part

Outline

- Gas defects
 - Gas absorption
 - Gas evolution
- Inclusions
- Shrinkage porosity
 - Defect characterization
 - Migrating hot spot
 - Primary austenite
- Metal expansion penetration
 - Primary austenite
- Other quality problems
- What about the future?
- Summary

Other Problems

- Residual stresses
- Prior history of the material
- Segregation
- Degenerated graphite

Source: Soivio, Elmquist, 2011

Source: Elmquist

What About Future?

- Inspection/detection
 - Most of the problems never reach the customer
- Research
- Process control/thermal analysis
- Casting simulation
- Optimization
 - Many of the problems can be solved or minimized with a combination of process control and optimal design of component as well as gating system

Future

- Sustainability
 - Life cycle analysis
 - The influence of defects
- Near-net shape
 - Minimize the need for machining
- High-performing cast iron materials
 - Increased strength
 - Less variations in properties

Outline

- Gas defects
 - Gas absorption
 - Gas evolution
- Inclusions
- Shrinkage porosity
 - Defect characterization
 - Migrating hot spot
 - Primary austenite
- Metal expansion penetration
 - Primary austenite
- Other quality problems
- What about the future?
- Summary

Summary

Casting

- Mould cavity
- Melting process
- Pouring
- Solidification
- Mould removal
- Cleaning and finishing

Advantages

- Complex shapes
- Holes and inner cavities
- Wide range of alloys
- Melt treatment
- Economical

Summary

Why? Who cares?

Thank you for your attention!

